§ 1065.376 interference values must meet the tolerance specified in paragraph (c) of this section. [74 FR 56515, Oct. 30, 2009] ## § 1065.376 Chiller NO₂ penetration. - (a) Scope and frequency. If you use a chiller to dry a sample upstream of a NO_x measurement instrument, but you don't use an NO_2 -to-NO converter upstream of the chiller, you must perform this verification for chiller NO_2 penetration. Perform this verification after initial installation and after major maintenance. - (b) Measurement principles. A chiller removes water, which can otherwise interfere with a NO_X measurement. However, liquid water remaining in an improperly designed chiller can remove NO_2 from the sample. If a chiller is used without an NO_2 -to-NO converter upstream, it could remove NO_2 from the sample prior NO_X measurement. - (c) System requirements. A chiller must allow for measuring at least 95% of the total NO₂ at the maximum expected concentration of NO₂. - (d) *Procedure*. Use the following procedure to verify chiller performance: - (1) Instrument setup. Follow the analyzer and chiller manufacturers' startup and operating instructions. Adjust the analyzer and chiller as needed to optimize performance. - (2) Equipment setup and data collection. (i) Zero and span the total $NO_{\rm X}$ gas analyzer(s) as you would before emission testing. - (ii) Select an NO_2 calibration gas, balance gas of dry air, that has an NO_2 concentration within $\pm 5\%$ of the maximum NO_2 concentration expected during testing. - (iii) Overflow this calibration gas at the gas sampling system's probe or overflow fitting. Allow for stabilization of the total NO_X response, accounting only for transport delays and instrument response. - (iv) Calculate the mean of 30 seconds of recorded total $NO_{\rm X}$ data and record this value as $x_{\rm NOXref.}$ - (v) Stop flowing the NO_2 calibration gas. - (vi) Next saturate the sampling system by overflowing a dewpoint generator's output, set at a dewpoint of 50 °C, to the gas sampling system's probe or overflow fitting. Sample the dewpoint generator's output through the sampling system and chiller for at least 10 minutes until the chiller is expected to be removing a constant rate of water. - (vii) Immediately switch back to overflowing the NO_2 calibration gas used to establish $x_{NO_{\rm xref.}}$ Allow for stabilization of the total $NO_{\rm x}$ response, accounting only for transport delays and instrument response. Calculate the mean of 30 seconds of recorded total $NO_{\rm x}$ data and record this value as $x_{NO_{\rm xmeas}}$. - (viii) Correct $x_{\rm NOxmeas}$ to $x_{\rm NOxdry}$ based upon the residual water vapor that passed through the chiller at the chiller's outlet temperature and pressure. - (3) Performance evaluation. If x_{NOxdry} is less than 95% of x_{NOxref} , repair or replace the chiller. - (e) *Exceptions*. The following exceptions apply: - (1) You may omit this verification if you can show by engineering analysis that for your NO_X sampling system and your emission calculations procedures, the chiller always affects your brakespecific NO_X emission results by less than 0.5% of the applicable NO_X standard. - (2) You may use a chiller that you determine does not meet this verification, as long as you try to correct the problem and the measurement deficiency does not adversely affect your ability to show that engines comply with all applicable emission standards. $[73~{\rm FR}~37312,~June~30,~2008]$ ## § 1065.378 NO₂-to-NO converter conversion verification. - (a) Scope and frequency. If you use an analyzer that measures only NO to determine NO_X , you must use an NO_2 -to-NO converter upstream of the analyzer. Perform this verification after installing the converter, after major maintenance and within 35 days before an emission test. This verification must be repeated at this frequency to verify that the catalytic activity of the NO_2 -to-NO converter has not deteriorated. - (b) Measurement principles. An NO₂-to-NO converter allows an analyzer that measures only NO to determine total